20 resultados para Quasi-periodic sequences

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The photonic modes of Thue-Morse and Fibonacci lattices with generating layers A and B, of positive and negative indices of refraction, are calculated by the transfer-matrix technique. For Thue-Morse lattices, as well for periodic lattices with AB unit cell, the constructive interference of reflected waves, corresponding to the zero(th)-order gap, takes place when the optical paths in single layers A and B are commensurate. In contrast, for Fibonacci lattices of high order, the same phenomenon occurs when the ratio of those optical paths is close to the golden ratio. In the long wavelength limit, analytical expressions defining the edge frequencies of the zero(th) order gap are obtained for both quasi-periodic lattices. Furthermore, analytical expressions that define the gap edges around the zero(th) order gap are shown to correspond to the = 0 and = 0 conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present work deals with a family of simply periodic orbits around the Moon in the rotating Earth Moon-particle system. Taking the framework of the planar, circular, restricted three-body problem, we follow the evolution of this family of periodic orbits using the numerical technique of Poincaré surface of section. The maximum amplitude of oscillation about the periodic orbits are determined and can be used as a parameter to measure the degree of stability in the phase space for such orbits. Despite the fact that the whole family of periodic orbits remain stable, there is a dichotomy in the quasi-periodic ones at the Jacobi constant Cj = 2.85. The quasi-periodic orbits with Cj < 2.85 oscillate around the periodic orbits in a different way from those with Cj > 2.85. © 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We ascribe the 15-60 Hz Quasi Periodic Oscillation (QPO) to the periastron precession frequency of the orbiting accreted matter at the boundary of magnetosphere-disk of Xray neutron star (NS). Considering the relativistic motion mechanism for the kHz QPO, that the radii of the inner disk and magnetosphere-disk of NS are correlated with each other by a factor is assumed. The obtained conclusions include: all QPO frequencies increase with increasing the accretion rate. The theoretical relations between 15-60 Hz QPO (HBO) frequency and the twin kHz QPOs are similar to the measured empirical formula. Further, the better fitted NS mass by the proposed model is about 1.9 solar masses for the detected LMXBs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present an analytic study of the finite size effects in sine-Gordon model, based on the semi-classical quantization of an appropriate kink background defined on a cylindrical geometry. The quasi-periodic kink is realized as an elliptic function with its real period related to the size of the system. The stability equation for the small quantum fluctuations around this classical background is of Lame type and the corresponding energy eigenvalues are selected inside the allowed bands by imposing periodic boundary conditions. We derive analytical expressions for the ground state and excited states scaling functions, which provide an explicit description of the flow between the IR and UV regimes of the model. Finally, the semiclassical form factors and two-point functions of the basic field and of the energy operator are obtained, completing the semiclassical quantization of the sine-Gordon model on the cylinder. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present work we explore regions of distant direct stable orbits around the Moon. First, the location and size of apparently stable regions are searched for numerically, adopting the approach of temporary capture time presented in Vieira Neto & Winter (2001). The study is made in the framework of the planar, circular, restricted three-body problem, Earth-Moon-particle. Regions of the initial condition space whose trajectories are apparently stable are determined. The criterion adopted was that the trajectories do not escape from the Moon during an integration period of 10(4) days. Using Poincare surface of sections the reason for the existence of the two stable regions found is studied. The stability of such regions proved to be due to two families of simple periodic orbits, h1 and h2, and the associated quasi-periodic orbits that oscillate around them. The robustness of the stability of the larger region, h2, is tested with the inclusion of the solar perturbation. The size of the region decreases, but it is still significant in size and can be useful in spacecraft missions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In a previous work, Vieira Neto & Winter (2001) numerically explored the capture times of particles as temporary satellites of Uranus. The study was made in the framework of the spatial, circular, restricted three-body problem. Regions of the initial condition space whose trajectories are apparently stable were determined. The criterion adopted was that the trajectories do not escape from the planet during an integration of 10(5) years. These regions occur for a wide range of orbital initial inclinations (i). In the present work it is studied the reason for the existence of such stable regions. The stability of the planar retrograde trajectories is due to a family of simple periodic orbits and the associated quasi-periodic orbits that oscillate around them. These planar stable orbits had already been studied (Henon 1970; Huang & Innanen 1983). Their results are reviewed using Poincare surface of sections. The stable non-planar retrograde trajectories, 110 degrees less than or equal to i < 180, are found to be tridimensional quasi-periodic orbits around the same family of periodic orbits found for the planar case (i = 180 degrees). It was not found any periodic orbit out of the plane associated to such quasi-periodic orbits. The largest region of stable prograde trajectories occurs at i = 60 degrees. Trajectories in such region are found to behave as quasi-periodic orbits evolving similarly to the stable retrograde trajectories that occurs at i = 120 degrees.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trajectories of the planar, circular, restricted three-body problem are given in the configuration space through the caustics associated to the invariant tori of quasi-periodic orbits. It is shown that the caustics of trajectories librating in any particular resonance display some features associated to that resonance. This method can be considered complementary to the Poincare surface of section method, because it provides information not accessible by the other method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present work we analyse the behaviour of a particle under the gravitational influence of two massive bodies and a particular dissipative force. The circular restricted three body problem, which describes the motion of this particle, has five equilibrium points in the frame which rotates with the same angular velocity as the massive bodies: two equilateral stable points (L-4, L-5) and three colinear unstable points (L-1, L-2, L-3). A particular solution for this problem is a stable orbital libration, called a tadpole orbit, around the equilateral points. The inclusion of a particular dissipative force can alter this configuration. We investigated the orbital behaviour of a particle initially located near L4 or L5 under the perturbation of a satellite and the Poynting-Robertson drag. This is an example of breakdown of quasi-periodic motion about an elliptic point of an area-preserving map under the action of dissipation. Our results show that the effect of this dissipative force is more pronounced when the mass of the satellite and/or the size of the particle decrease, leading to chaotic, although confined, orbits. From the maximum Lyapunov Characteristic Exponent a final value of gamma was computed after a time span of 10(6) orbital periods of the satellite. This result enables us to obtain a critical value of log y beyond which the orbit of the particle will be unstable, leaving the tadpole behaviour. For particles initially located near L4, the critical value of log gamma is -4.07 and for those particles located near L-5 the critical value of log gamma is -3.96. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we have investigated a region of direct stable orbits around the Moon, whose stability is related to the H2 Family of periodic orbits and to the quasi-periodic orbits that oscillate around them. The stability criteria adopted was that the path did not escape from the Moon during an integration period of 1000 days (remaining with negative two-body Moon-probe orbital energy during this period). Considering the three-dimensional four-body Sun-Earth-Moon-probe problem, we investigated the evolution of the size of the stability region, taking into account the eccentricity of the Earth's orbit, the eccentricity and inclination of the Moon's orbit, and the solar radiation pressure on the probe. We also investigated the evolution of the region's size and its location by varying the inclination of the probe's initial osculating orbit relative to the Moon's orbital plane between 0 degrees and 180 degrees. The size of the stability region diminishes; nevertheless, it remains significant for 0 <= i <= 25 degrees and 35 degrees <= i <= 45 degrees. The orbits of this region could be useful for missions by space vehicles that must remain in orbit around the Moon for periods of up to 1000 days, requiring low maintenance costs. (c) 2005 COSPAR. Published by Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Successful experiments in nonlinear vibrations have been carried out with cantilever beams under harmonic base excitation. A flexible slender cantilever has been chosen as a convenient structure to exhibit modal interactions, subharmonic, superharmonic and chaotic motions, and others interesting nonlinear phenomena. The tools employed to analyze the dynamics of the beam generally include frequency- and force-response curves. To produce force-response curves, one keeps the excitation frequency constant and slowly varies the excitation amplitude, on the other hand, to produce frequency-response curves, one keeps the excitation amplitude fixed and slowly varies the excitation frequency. However, keeping the excitation amplitude constant while varying the excitation frequency is a difficult task with an open-loop measurement system. In this paper, it is proposed a closed-loop monitor vibration system available with the electromagnetic shaker in order to keep the harmonic base excitation amplitude constant. This experimental setup constitutes a significant improvement to produce frequency-response curves and the advantages of this setup are evaluated in a case study. The beam is excited with a periodic base motion transverse to the axis of the beam near the third natural frequency. Modal interactions and two-period quasi-periodic motion are observed involving the first and the third modes. Frequency-response curves, phase space and Poincaré map are used to characterize the dynamics of the beam.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

By direct numerical simulation of the time-dependent Gross-Pitaevskii equation, we study different aspects of the localization of a noninteracting ideal Bose-Einstein condensate (BEC) in a one-dimensional bichromatic quasiperiodic optical-lattice potential. Such a quasiperiodic potential, used in a recent experiment on the localization of a BEC, can be formed by the superposition of two standing-wave polarized laser beams with different wavelengths. We investigate the effect of the variation of optical amplitudes and wavelengths on the localization of a noninteracting BEC. We also simulate the nonlinear dynamics when a harmonically trapped BEC is suddenly released into a quasiperiodic potential, as done experimentally in a laser speckle potential. We finally study the destruction of the localization in an interacting BEC due to the repulsion generated by a positive scattering length between the bosonic atoms. © 2009 The American Physical Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In a previous work, GiuliattiWinter et al. found several stable regions for test particles in orbit around Pluto associated with families of periodic orbits obtained in the circular, restricted three-body problem. They have shown that a possible eccentricity of the Pluto-Charon binary slightly reduces but does not destroy any of these stable regions. In thiswork, we extended their results by analysing the cases with the orbital inclination (I) equal to zero and considering the argument of pericentre (w) equal to 90°, 180° and 270°. We explore the influence of the orbital inclination of the particles in these stable regions. In this case, the initial inclination varies from 10° to 170° in steps of 10°. We also present a sample of results for the longitude of the ascending node Ω = 90°, considering the cases I = 20°, 50°, 130° and 180°. Our results show that stable regions are present in all of the inclined cases, except when the initial inclination of the particles is equal to 110°. A sample of 3D trajectories of quasi-periodic orbits were found related to the periodic orbits obtained in the planar case by Giuliatti Winter et al. © 2013 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)